A two-level additive Schwarz method for the Morley nonconforming element approximation of a nonlinear biharmonic equation

نویسنده

  • XUEJUN XU
چکیده

In this paper, we consider the well known Morley nonconforming element approximation of a nonlinear biharmonic equation which is related to the well-known two-dimensional Navier–Stokes equations. Firstly, optimal energy and H1-norm estimates are obtained. Secondly, a two-level additive Schwarz method is presented for the discrete nonlinear algebraic system. It is shown that if the Reynolds number is sufficiently small, the two-level Schwarz method is optimal, i.e. the convergence rate of the Schwarz method is independent of the mesh size and the number of subdomains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-level additive Schwarz preconditioners for nonconforming finite element methods

Two-level additive Schwarz preconditioners are developed for the nonconforming P1 finite element approximation of scalar second-order symmetric positive definite elliptic boundary value problems, the Morley finite element approximation of the biharmonic equation, and the divergence-free nonconforming P1 finite element approximation of the stationary Stokes equations. The condition numbers of th...

متن کامل

The Morley element for fourth order elliptic equations in any dimensions

In this paper, the well-known nonconforming Morley element for biharmonic equations in two spatial dimensions is extended to any higher dimensions in a canonical fashion. The general -dimensional Morley element consists of all quadratic polynomials defined on each -simplex with degrees of freedom given by the integral average of the normal derivative on each -subsimplex and the integral average...

متن کامل

A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation

In this paper, we study finite element approximations of the viscosity solution of the fully nonlinear Monge-Ampère equation, det(Du) = f (> 0) using the well-known nonconforming Morley element. Our approach is based on the vanishing moment method, which was recently proposed as a constructive way to approximate fully nonlinear second order equations by the author and Feng in [15]. The vanishin...

متن کامل

A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes

The discrete reliability of a finite element method is a key ingredient to prove optimal convergence of an adaptive mesh-refinement strategy and requires the interchange of a coarse triangulation and some arbitrary refinement of it. One approach for this is the careful design of an intermediate triangulation with one-level refinements and with the remaining difficulty to design some interpolati...

متن کامل

Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors

This paper concerns discontinuous finite element approximations of a fourth-order bi-wave equation arising as a simplified Ginzburg-Landautype model for d-wave superconductors in the absence of an applied magnetic field. In the first half of the paper, we construct a variant of the Morley finite element method, which was originally developed for approximating the fourthorder biharmonic equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003